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1. Introduction

In open topological string models, the space of boundary or boundary condition changing

observables is generically Z2-graded. In certain cases this grading extends to a larger

Abelian group G, such as the group of characters of the surviving vector and axial R-

symmetry of the worldsheet model. In such theories, the category G of boundary sectors is

G-graded, and the general formalism of two-dimensional open topological field theories [1, 2]

must be enriched to account for this supplementary structure.

A basic technical device in the study of open 2d TFTs is the idea of reduction to an

ungraded category, which is implicit in most studies of homological mirror symmetry. This

reduces the structure of [1, 2] to a special case of the usual theory of Serre functors [3].

Such a reduction is possible provided that the graded category of boundary sectors admits

sufficient symmetries which allow one to trade in the grading for an action on the collection
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of objects. In the generic, Z2-graded case, this translates the structure of [1] into a Calabi-

Yau category whose shift functor squares to the identity. A similar relation exists when the

open 2d TFT is Zω-graded, the corresponding object being a Calabi-Yau category whose

shift functor has order ω. Finally, a Z-graded open 2d TFT corresponds to a Calabi-Yau

category whose shift functor generates a Z-subgroup of the automorphism group.

When working with extended gradings by larger Abelian groups G, this point of view

leads to the theory of categories endowed with a group action, and their skew categories [4].

In this paper, I discuss the general framework allowing for such a reduction, giving a precise

relation between the physics description in terms of a G-graded category endowed with

natural and nondegenerate traces and a more familiar mathematical description in terms

of ‘equivariant cyclic categories’, i.e. ungraded categories endowed with an (Abelian) group

action and a special type of Serre functor. This leads to a reconstruction result which allows

one to recover the physics description from more traditional mathematical data. When the

group G is sufficiently large, this result shows how the formalism of [1, 2] can produce non-

Calabi-Yau categories. As an application, I give a complete treatment of grading issues

for the case of topological Landau-Ginzburg models, refining previous discussion of such

theories.

A common example of extended grading in open 2d TFTs arises from open sigma

models which admit an unbroken subgroup Γ of vector and axial R-symmetries. In this

situation, the category G of boundary sectors admits a grading by the Abelian group of

characters G = (Γ/Γ0)
∗, where Γ0 is the trivially acting subgroup. The main application

considered in this paper concerns B-type topological Landau-Ginzburg models with target

C
n and bulk superpotential W , whose D-branes were constructed in [5 – 9]. Using the

normalization in which vector R-charges are integral, the bulk superpotential preserves

the full worldsheet U(1)V R-symmetry provided that it is a homogeneous polynomial of

the bulk superfields, whose degree we denote by h = degW . The model also admits an

axial R-symmetry, which is broken to a Z2 subgroup by the boundary conditions. This is

responsible for the appearance of supermodules in the description of [5 – 8] and gives an

unbroken total R-symmetry group Γ = U(1) × Z2. It turns out that the grading group G

depends on the parity of h. In fact, direct analysis of the worldsheet shows that the trivially

acting subgroup Γ0 is trivial for even h and isomorphic to Z2 for odd h. As a consequence,

G equals Z × Z2 or Z, depending on the parity of h. Taking this fact into account, one

finds that the category of ‘graded D-branes’ (i.e. those B-type branes which preserve the full

vector R-symmetry) is most conveniently described as the category of finitely generated G-

graded integrable modules over a curved differential graded algebra with trivial differential.

This simplifies the more traditional description in terms of matrix factorizations, and allows

one to give a complete construction of the differential graded category underlying graded

D-branes, in a formulation which explicitly displays the worldsheet symmetry of the model.

The formulation used in this paper is a Landau-Ginzburg extension of the approach through

graded superconnections of total degree one used in [13 – 20] for B-type branes on Calabi-

Yau manifolds.

Using this description, one finds that the resulting open 2d TFT is described by a

‘G-graded category with shifts’, whose shift functors are compatible with the invariant
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traces. Restricting to morphisms of trivial degree gives an equivalent description in terms

of a G-equivariant cyclic structure on the triangulated category of graded matrix factor-

izations constructed in [10]. In particular, we find that the traces of [5] lead to a precise

conjecture for a Serre functor on this triangulated category. Finally, the correspondence

result mentioned above allows one to recover the full open 2d TFT from this triangulated

category, provided that the latter is considered together with this Serre functor.

The paper is organized as follows. In section 1, we discuss the mathematical notion

of open 2d TFTs with extended grading, and explain how examples of such gradings arise

from worldsheet R-symmetries. In section 2, we discuss the special case of ‘graded open

2d TFTs with shifts’, which has an equivalent description in terms of ungraded categories

endowed with an equivariant cyclic structure. After developing some mathematical ma-

chinery, we give a result which translates between the two descriptions. This gives a precise

relation between the nondegenerate traces required by the physics formalism and the usual

theory of Serre functors [3]. Section 3 discusses dG categories with extended grading, fo-

cusing on the example of integrable modules with extended grading over a curved dGA,

which is relevant for Landau-Ginzburg models. In section 4, we apply this machinery to

the case of Landau-Ginzburg models with target C
n. Using the worldsheet analysis of

appendix B, we show that graded matrix factorizations can be described as the G-graded

dG category of integrable modules over a curved differential graded algebra, whose total

cohomology category recovers the desired G-graded open 2d TFT with shifts. After giving

the precise homogeneity property of the traces, we use the general correspondence of sec-

tion 2 to extract a conjecture for the Serre functor on the triangulated category of matrix

factorizations, and check it against known results in the Calabi-Yau and minimal model

case [11, 12]. This fills in a gap in the relation between the mathematical analysis of [10]

and the physical description of open 2d TFTs. Appendix A contains a general discussion

of equivariant Serre functors, while appendix B gives the worldsheet analysis which leads

to the description used in section 4.

2. Graded open topological field theories in two dimensions

It was shown in [1, 2] that the boundary sector of a topological field theory in two di-

mensions is encoded by category-theoretic data, which can be viewed as an abstract def-

inition of the notion of open 2d topological field theory (TFT). As shown in loc. cit.,

such a theory is described by a Hom-finite1
C-category G, whose objects are the bound-

ary sectors, and whose morphisms are the boundary/boundary condition changing ob-

servables; the morphism compositions correspond to the product of such observables. A

distinguishing feature of such theories is the existence of nondegenerate invariant linear

maps tr a : HomG(a, a) → C, which arise from the two-point functions on the disk. In

the generic case, the category G is Z2-graded, while the traces are graded-symmetric and

Z2-homogeneous of a common degree which is a characteristic of the model.

It is often the case that G carries a grading by some larger Abelian group G, which

we will write in additive notation. The traces of such models are homogeneous of some

1Recall that G is called Hom-finite if dimC HomG(a, b) < ∞ for all a, b ∈ ObG.
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common degree −κ ∈ G, and must satisfy a graded-symmetry condition whose signs involve

a group morphism ǫ : G → Z2. In fact, G can be viewed as an extension of Z2 by the

kernel of ǫ. To capture this, the formalism of [1, 2] can be enhanced as follows. Recall that

a C-category G is called G-graded if we are given direct sum decompositions:

HomG(a, b) = ⊕g∈G Homg
G(a, b) (2.1)

for all a, b ∈ ObG such the following conditions are satisfied:

1) We have ida ∈ Hom0
G(a, a) for all objects a of G.

2) We have Homh
G(b, c) ◦Homg

G(a, b) ⊂ Homh+g
G (a, c) for all objects a, b, c and all g, h ∈

G.

Given u ∈ Homg
G(a, b), we set degu := g. Then models with a boundary space grading by

G can be described as follows:

Definition. Let G be an Abelian group, ǫ : G → Z2 a group morphism and κ ∈ G

an element of G. A graded open 2d TFT of type (G,κ, ǫ) is a pair (G, tr ) where G is a

Hom-finite G-graded C-category and tr is a family of maps tr a : HomG(a, a) → C defined

for all a ∈ ObG, such that:

(i) The following selection rule is satisfied for any homogeneous u ∈ HomG(a, a):

tr a(u) = 0 unless degu = κ . (2.2)

(ii) The following conditions are satisfied for all a, b ∈ ObG:

tr a(vu) = (−1)ǫ(degu)ǫ(degv)tr b(uv) (2.3)

∀ homogeneous u ∈ HomG(a, b) and v ∈ HomG(b, a) .

(iii) For any objects a, b of G and any u ∈ HomG(a, b), the following implication holds:

tr a(vu) = 0 ∀v ∈ HomG(b, a) ⇒ u = 0 . (2.4)

Trivial examples are provided by generic open 2d TFTs, with G = Z2 and ǫ = idZ2 .

More complicated models arise by considering an extended worldsheet symmetry group Γ

which is preserved by the boundary conditions corresponding to the objects of G. Then Γ

acts on the spaces of boundary and boundary condition-changing observables, i.e. it acts

by automorphisms of G which fix all of its objects. If Γ0 is the trivially acting subgroup,

we have representations of Γ/Γ0 on the vector spaces HomG(a, b). Thus we can view G

as a C[Γ/Γ0]-category, where C[Γ/Γ0] is the group algebra of Γ/Γ0. This means that

HomG(a, b) are C[Γ/Γ0]-modules and the compositions of G are C[Γ/Γ0]-linear. Since the

quotient group Γ/Γ0 is Abelian, the spaces HomG(a, b) decompose into one-dimensional

irreducible representations, which can be collated together to give decompositions (2.1),

where the grading group G := (Γ/Γ0)
∗ is the character group (Pontryaghin dual) of Γ/Γ0.

Compatibility of the representations with morphism compositions translates into relations

2) above. On the other hand, the traces satisfy (2.2), where κ ∈ G is dictated by the
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anomaly of the worldsheet path integral under the action of Γ/Γ0 (the later arises because

the action of Γ typically involves some nontrivial axial transformation of the worldsheet

fermions).

A common application of the above concerns the vector and axial R-symmetries of a

sigma model. Recall that two dimensional sigma models with bulk N = (2, 2) supersym-

metry admit two classes of boundary conditions preserving two supersymmetries, namely

boundary conditions of A and B-type. Each of these types preserves a certain subgroup of

the R-symmetry group of the bulk theory. At classical level and in the absence of a bulk

superpotential, the bulk theory has vector and axial R-symmetry groups U(1)V and U(1)A,

the later being subject to a quantum anomaly. On the other hand, U(1)V is preserved by

homogeneous bulk superpotentials but is broken by inhomogeneous ones. Let us denote

the surviving vector and axial R-symmetry subgroups of the quantum bulk theory by RV

and RA. Then A-type boundary conditions preserve2 RA while breaking RV to a subgroup

R′
V . The B-type boundary conditions preserve RV , while breaking RA to a subgroup R′

A.

Hence the boundary model has a global R-symmetry Γ = ΓA × ΓV where ΓA = RA and

ΓV = R′
V for A-branes, and ΓA = R′

A,ΓV = RV for B-branes. As a consequence, the space

of boundary observables carries a representation of the Abelian group Γ. Define Γ′ = Γ/Γ0,

where Γ0 is the trivially acting subgroup. Then the spaces of boundary/boundary condi-

tion changing observables carry gradings by the Abelian group of characters G = (Γ′)∗.

Upon performing the topological twist, the A (respectively B) -type branes of the untwisted

theory become topological D-branes of the A (respectively B) model. Then Γ acts on the

space of topological observables, which therefore carries a grading by G. One thus finds

that the corresponding open 2d TFT is G-graded.

3. Graded open 2d TFTs with shifts

In this section, we fix an Abelian group G.

3.1 Mathematical preparations

G-categories. A G-category is a triple (T , G, γ) where G is a group, T is a C-category

and γ is a faithful3 G-action on T , i.e. a group monomorphism γ : G → Aut(T ), where

Aut(T ) is the group of automorphisms of T . Given two G-categories, a G-invariant functor

(T , G, γ) → (T ′, G, γ′) is a functor F : T → T ′ such that F ◦ γ(g) = γ′(g) ◦ F for all

g ∈ G. Small G-categories form a category CatG whose morphisms are given by G-invariant

functors.

Graded categories with shifts. Given a G-graded category G, we let Aut0(G) de-

note the group of degree zero automorphisms, i.e. those automorphisms F of G such that

F (Homg
G(a, b)) ⊂ Homg

G(a, b) for all objects a, b and all g ∈ G.

2For the A model, RA can also suffer a quantum boundary anomaly, so one must chose the A-type

boundary conditions such that this anomaly vanishes. This corresponds to the vanishing Maslow index

condition in [26].
3We restrict to faithful actions in order to avoid pathologies below.
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A graded category with shifts is a quadruple (G, G, γ, s) where G is a G-graded category,

γ : G → Aut0(G) is a group monomorphism and s(g) : idG
∼
→ γ(g) are isomorphisms of

functors, subject to the conditions:

sa(g) ∈ Hom−g
G (a, γ(g)(a)) (3.1)

and:

γ(g)(sa(h)) ◦ sa(g) = sa(g + h) . (3.2)

for all a, b ∈ ObG and g, h ∈ G.

We say that γ(g), s(g) are the shifts and suspensions of G. Naturality of s(g) reads:

γ(g)(u) ◦ sa(g) = sb(g) ◦ u (3.3)

for all u ∈ HomG(a, b). Combined with (3.2), this gives:

sa(g + h) = sγ(h)(a)(g) ◦ sa(h) , (3.4)

which in turn implies sa(0) = ida and sa(−g) = sγ(−g)(a)(g)−1. Using these equations, one

checks the relation:

sγ(g)(a)(h) = γ(g)(sa(h)) , (3.5)

which will be useful below.

A morphism (G, G, γ, s) → (G′, G, γ′, s′) of G-graded categories with shifts is a functor

F : G → G′ which preserves morphism degrees, intertwines γ(g) and γ′(g) and maps sa(g)

into s′F (a)(g) (the second condition means that F : (G, G, γ) → (G′, G, γ′) is a G-invariant

functor). Small G-graded categories with shifts form a category GrCatsG when endowed

with the morphisms given by such functors.

The skew category of a G-category. The graded skew category of a G-category

(T , G, γ) is the G-graded category T •[G] having the same objects as T , morphism spaces:

HomT •[G](a, b)
def
= ⊕g∈G Homg

T •[G](a, b) (3.6)

with:

Homg
T •[G](a, b)

def
= HomT (a, γ(g)(b)) (3.7)

and morphism compositions given by:

Homh
T •[G](b, c) × Homg

T •[G]
(a, b) ∋ (v, u) −→ v ∗ u := γ(g)(v) ◦ u ∈ Homh+g

T •[G]
(a, b) (3.8)

The skew category T [G] of (T , G, γ) is the category obtained from T •[G] by forgetting the

G-grading. When the action of G on ObT is free, T [G] is equivalent [4] with the naive

quotient category of T by G.

The fundamental property of T [G] is that objects belonging to the same G-orbit of

T become isomorphic in T [G]. Indeed, ida ∈ HomT (a, a) = Hom−g
T •[G](a, γ(g)(a)) and

idγ(g)(a) ∈ HomT (γ(g)(a), γ(g)(a)) ≈ Homg
T •[G](γ(g)(a), a) provide mutually inverse iso-

morphisms between a and γ(g)(a). We let sa(g) : a → γ(g)(a) denote the morphism ida

when viewed as an element of Hom−g
T •[G](a, γ(g)(a)).
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Notice that γ(g) can be viewed as degree zero automorphisms γ•(g) of T •[G], giv-

ing a G-category structure on the latter. The maps sa(g) give isomorphisms of functors

s(g) : idT [G]
∼
→ γ(g), which satisfy γ(g)(s(h)) ◦ s(g) = s(g + h) for all h, g ∈ G. Thus

(T •[G], G, γ•, s) is a graded category with shifts.

Equivariant functors and framings. Given two G-categories, (T , G, γ) and (T ′, G, γ′),

a functor F : T → T ′ is called G-equivariant if there exist isomorphisms of functors

η(g) : F ◦ γ(g)
∼
→ γ′(g) ◦ F satisfying the compatibility conditions:

η(g1 + g2) = γ(g1)(η(g2)) ◦ η(g1) , (3.9)

where we use the obvious slight abuse of notation. These conditions imply that η(0) is the

identity endomorphism of F . Any choice of η satisfying (3.9) will be called a framing of F . A

framed G-equivariant endofunctor F : T → T ′ induces an endofunctor F • : T •[G] → T ′•[G]

given by F •(a) := F (a) on objects and acting on morphisms as follows:

u ∈ Homg
T •[G](a, b) = HomT (a, γ(g)(b))

→ F •
ab(u) := ηb(g) ◦ Faγ(g)(b)(u) ∈ Homg

T ′•[G](F (a), F (b)) .

Notice that F • preserves the degree of morphisms.

Obviously, a G-invariant functor is G-equivariant and admits the trivial framing given

by η(g) = id for all g. Given an invariant functor F , we make the convention that F •

denotes the functor induced by the trivial framing. Since G is Abelian, each γ(g) is G-

invariant and trivially framed, thus inducing the endofunctor γ•(g) of T •[G] mentioned

above.

Given framed G-equivariant endofunctors (F, ηF ) and (G, ηG), their composition F ◦G

is G-equivariant and admits the composite framing ηF◦G(g) = ηF (g) ◦ F (ηG(g)). We have

(F ◦G)• = F • ◦G• when F ◦G is endowed with this framing. Applying this to G-invariant

functors (which we take to be trivially framed), we find that • gives a functor form CatG
to GrCatsG.

Orbit categories. Given an automorphism σ of T , let Gσ be the subgroup of Aut(T )

generated by σ, which acts tautologically on T via the inclusion Gσ →֒ Aut(T ). We define

the orbit category [27] of T modulo σ to be the skew category Tσ
def
= T [Gσ ]. We have

Gσ ≈ Zω := Z/ωZ, where ω = ordσ (we set ω = 0 when no power of σ equals the identity

functor). Therefore, T •
σ := T •[Gσ ] is Zω-graded via Homn

Tσ
•(a, b) = HomT (a, σn(b)) for all

n ∈ Zω. An endofunctor F of T is Gσ-equivariant iff F ◦ σ ≈ σ ◦ F , with strict equality

when F is Gσ-invariant.

Notice that σ is Gσ-invariant, thus inducing an automorphism σ• of T •
σ when endowed

with the trivial framing. We have σ• ≈ idTσ in Tσ, via the isomorphism of functors given

by ida ∈ Isom−1
T •[G](a, σ(a)). Moreover, we have Homn

Tσ
•(a, σ(b)) = Homn+1

Tσ
• (a, b), which

shows that σ• is a shift functor for the Zω-graded category T •
σ . The application of orbit

categories to open 2d TFTs was discussed in some detail in appendix A of [23].
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The null restriction of a graded category with shifts. Given a graded category with

shifts (G, G, γ, s), the non-full subcategory G0 obtained from G by keeping all objects but

restricting to morphisms of trivial degree carries the G-action γ0 obtained by co-restricting

γ. Hence (G0, G, γ0) is a G-category. Given a morphism F : (G, G, γ, s) → (G′, G, γ′, s′)

in GrCatsG, we let F 0 : (G0, G, γ0) → (G′0, G, γ′0) be the morphism in CatG obtained by

restricting the action F to morphisms of degree zero. This gives a functor 0 : GrCatsG →

CatG.

Relation between skew categories and graded categories with shifts. The fol-

lowing result characterizes skew categories as graded categories with shifts.

Proposition. The functors • : CatG → GrCatsG and 0 : GrCatsG → CatG are mutually

quasi-inverse equivalences.

Proof.

(i) Given a G-category (T , G, γ), we showed above that (T •[G], G, γ•, s) is a G-graded

category with shifts. Setting G := T •[G], it is clear that G0 coincides with T as a

G-category. Given a morphism F in CatG, it is also obvious that (F •)0 = F . Hence

the composition [(−)•]0 is the identity functor of CatG.

(ii) Given a G-graded category with shifts (G, G, γ, s), consider the G-category (T , G, γ0)

where T := G0. We define a functor of graded categories Φ := ΦG : G → T •[G] which

acts trivially on objects (i.e. Φ(a) := a for all a ∈ ObG) and acts on morphisms as

follows:

HomG(a, b) ∋ u = ⊕g∈gug → Φab(u) := ⊕g∈Gsb(g) ◦ ug ∈ HomT •[G](a, b) .

Here ug ∈ Homg
G(a, b), so sb(g) ◦ ug ∈ Hom0

G(a, γ(g)(b)) = HomT (a, γ(g)(b)) =

Homg
T •[G](a, b). To check that Φ is a functor, pick u ∈ Homg

G(a, b) and v ∈ Homh
G(b, c)

and compute:

Φbc(v) ∗ Φab(u) = γ(g)(sc(h) ◦ v) ◦ sb(g) ◦ u = γ(g)(sc(h)) ◦ γ(g)(v) ◦ sb(g) ◦ u

= γ(g)(sc(h)) ◦ sc(g) ◦ v ◦ u = sc(g + h) ◦ v ◦ u = Φac(v ◦ u) ,

where we used (3.3) and (3.2). Since Φab are clearly bijective, we find that Φ is an

isomorphism between G and T •[G] = (G0)•[G].

We now show that Φ is an isomorphism of graded categories with shifts. To show that

Φ commutes with the G-actions, pick u ∈ Homh
G(a, b) and compute:

Φ(γ•(g)(u)) = sγ(g)(b)(h) ◦ γ•(g)(u) = γ(g)(sb(h)) ◦ γ•(g)(u) = γ(g)(Φ(u)) ,

where we used (3.5). Finally, we have Φ(sa(g)) = sγ(g)(a)(−g) ◦ sa(g) = sa(e) = ida, where

ida is viewed as an element of Hom−g
T •[G](a, γ(g)(a)) as required by the definition of Φ.

Thus Φ(sa(g)) = s
T •[G]
a (g) is the corresponding suspension of T •[G]. We conclude that Φ

is an isomorphism of graded categories with shifts. Given a morphism F : (G, G, γ, s) →
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(G′, G, γ′, s′) in GrCatsG, it is easy to check the identity ΦG′ ◦F = (F 0)• ◦ΦG , which shows

that ΦG give an isomorphism of functors idGrCatsG
→ [(−)0]•.

The conclusion now follows by combining (i) and (ii).

The proposition allows us to reconstruct a graded category with shifts G as the skew

category of its null restriction G0, thereby reducing the theory of graded categories with

shifts to that of G-categories. Notice that the functor ΦG realizing this correspondence is

determined by the suspensions of G. In the next subsection, we show how this result can

be used to express the data of certain graded open 2d TFTs in terms of G-categories with

supplementary structure.

Convention. In order to simplify notation, we will often use the same symbol for the

G-representation γ of a G-category T and the representation γ• of its skew category T •[G].

Which one is meant should be clear from the context.

3.2 G-graded open 2d TFTs with shifts

Let G be an Abelian group as before. G-graded open 2d topological field theories can be

described through ungraded categories provided that they admit a G-action with special

properties. Such special theories can be described as follows.

Definition. A graded open 2d TFT with shifts is a system (G, G, γ, s, tr , κ, ǫ) such that:

(i) (G, G, γ, s) is a Hom-finite G-graded C-category with shifts.

(ii) (G, tr ) is a graded 2d open TFT of type (G,κ, ǫ), where κ ∈ G and ǫ ∈ Hom(G, Z2)

(iii) The traces tr a : HomG(a, a) → C satisfy the equivariance conditions:

tr γ(g)(a)(γ(g)(u)) = (−1)ǫ(g)(ǫ(κ)+1)tr a(u) (3.10)

for all a ∈ ObG, u ∈ HomG(a, a) and g ∈ G.

We will see in a moment that this structure is equivalent with the one given in the

definition below.

Definition. Let (T , G, γ) be a Hom-finite G-category and fix an element κ ∈ G and a

group morphism ǫ : G → Z2. A G-equivariant cyclic structure of type (κ, ǫ) on (T , G, γ)

is a family of linear maps tra : HomT (a, γ(κ)(a)) → C defined for all a ∈ ObT which obey

the symmetry conditions:

tra(v ◦ u) = trb(γ(κ)(u) ◦ v) ∀u ∈ HomT (a, b) ∀v ∈ HomT (b, γ(κ)(a)) , (3.11)

the equivariance conditions:

trγ(g)(a)(γ(g)(u)) = (−1)ǫ(g)(ǫ(κ)+1)tra(u) ∀u ∈ HomT (a, γ(κ)(a)) (3.12)

and the following nondegeneracy condition for all u ∈ HomT (a, b):

tra(v ◦ u) = 0 ∀v ∈ HomT (b, γ(k)(a)) ⇒ u = 0 . (3.13)

We also say that (T , G, γ, tr, κ, ǫ) is an equivariant cyclic category of type (G, γ, κ, ǫ).
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Observation. Let (T , G, γ, tr, κ, ǫ) be an equivariant cyclic category and set S := γ(κ).

Using the traces tra, define linear maps φab : HomT (a, b) → HomT (b, S(a))v via:

φab(u)(v) := tra(v ◦ u). Then the pair (S, φ) is a Serre functor on T in the sense of [3].

Indeed, the symmetry condition (3.11) amounts to naturality of φab in a and b, while the

nondegeneracy condition (3.13) amounts to bijectivity of φab. The traces can be recovered

as tr a = φaa(ida). Since G is Abelian, the functor S = γ(κ) is G-invariant. On the other

hand, condition (3.12) becomes:

φγ(g)(a),γ(g)(a)(idγ(a)) ◦ γaS(a)(g) = (−1)ǫ(g)(ǫ(κ)+1)φaa(ida) , (3.14)

which can be viewed as an equivariance condition for φ. Hence (S, φ) is a rather special

type of equivariant Serre functor on T . A G-equivariant cyclic category can be viewed

as a G-category endowed with such an equivariant Serre functor. A general discussion of

equivariant Serre functors can be found in appendix A.

The following results shows that graded open 2d TFTs with shifts are equivalent with

equivariant cyclic categories. This translates the physics formalism into a subset of the

theory of equivariant Serre functors.

Proposition. The following data are equivalent:

(a) A graded open 2d TFT with shifts (G, G, γ, s, tr , κ, ǫ)

(b) A G-equivariant cyclic category (T , G, γ, tr, κ, ǫ).

Moreover, the relation between (a) and (b) is given by G = T •[G] (thus T = G0) and

tr a(u) = tra(u) for all u ∈ Homκ
T bullet[G]

(a, a) = HomcalT (a, γ(κ)(a)).

Proof.

(i) Given the data at (a), set T = G0 and define maps tra : HomT (a, γ(κ)(a)) → C via:

tra(u) := tr a(Φ
−1(u)) ∀u ∈ HomT (a, γ(κ)(a)) = Homκ

T •[G](a, a) , (3.15)

where Φ : G
∼
→ T •[G] is the isomorphism of graded categories with shifts constructed

in the proof of the last proposition of Subsection 3.1.

Given u ∈ HomT (a, b) = Hom0
T •[G](a, b) and v ∈ HomT (b, γ(κ)(a)) = Homκ

T •[G](b, a),

we have:

tra(v ◦ u) = tr a(Φ
−1(v ∗ u))

= tr a(Φ
−1(v)Φ−1(u))

= tr b(Φ
−1(u)Φ−1(v))

= tr b(Φ
−1(u ∗ v))

= tr b(Φ
−1(γ(κ)(u) ◦ v))

= trb(γ(κ)(u) ◦ v) ,

where we used ǫ(degu) = ǫ(0) = 0. This shows that (3.11) is satisfied. Equation (3.12)

follows trivially from (3.10). It is also clear that tra are nondegenerate.
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(ii) Given the data at (b), set G := T •[G] and define maps tr a : Homκ
G(a, a) → C via:

tr a(u) := tra(u) ∀u ∈ Homκ
G(a, a) = HomT (a, γ(κ)(a)) , (3.16)

with extension by zero to other degrees. It is clear that tr a are nondegenerate and

satisfy the selection rule (2.2) as well as (3.10). To show (2.3), pick u ∈ Homg
G(a, b) =

HomT (a, γ(g)(b)) and v ∈ Homh
G(b, a) = HomT (b, γ(h)(a)) with g + h = κ. Then

tr a(v ∗ u) = tra(γ(g)(v) ◦ u)

= tr γ(g)(b)(γ(κ)(u) ◦ γ(g)(v))

= trγ(g)(b)(γ(g + h)(u) ◦ γ(g)(v))

= trγ(g)(b)(γ(g)(γ(h)(u) ◦ v))

= (−1)ǫ(g)(ǫ(κ)+1)trb(γ(h)(u) ◦ v)

= (−1)ǫ(g)ǫ(h)tr b(u ∗ v) , (3.17)

where we used (3.11) and (3.12) and noticed that (−1)ǫ(g)(ǫ(κ)+1) = (−1)ǫ(g)ǫ(h) since

g + h = κ implies ǫ(κ) = ǫ(g) + ǫ(h).

Trivial examples. Consider a cyclic group G = Zω := Z/ωZ (notice that we allow for

the case ω = 0, when G = Z) and let [1] := γ(1). Setting [n] := γ(n) = [1]n, we have s(n) =

s(1)n where we use an obvious abuse of notation. The positive integer ω is the order of the

automorphism [1] (we set ord[1] = 0 if [1]n 6= idG for all n). Thus a Zω-graded category with

shifts is simply a Zω-graded category endowed with an automorphism [1] of order ω and a

degree −1 isomorphism of functors s(0) : idG
∼
→ [1]. The later induces linear isomorphisms

Homk
G(a, b[1]) ≈ Homk+1

G (a, b) for all objects a, b. The element κ ∈ Zω is the common

degree of the traces tr a. On the other hand, a Zω-cyclic category is simply a category T

endowed with an automorphism [1] of order ω and such that ([κ], φ) is a Serre functor,

where the maps φab : HomT (a, b) → HomT (b, a[κ])v correspond to cyclic nondegenerate

traces subject to the equivariance condition tra[1]u[1] = (−1)ǫ(0)(ǫ(κ)+1)tra(u). Thus T is a

Calabi-Yau category of dimension κ, whose shift functor has order ω and whose traces are

equivariant in the sense above (this refines results of [29]). The proposition above shows

that such categories are the same thing as Zω-graded open 2d TFTs with shifts, the relation

in this case being given by taking the orbit category of T with respect to the shift functor

[1]. Notice that the correct grading group of the TFT can be recovered as the subgroup of

Aut(T ) generated by [1]. Two familiar cases are ω = 2 and ω = 0, with morphism ǫ given

by idZ2 and mod 2 reduction respectively. The first case corresponds to a generic open

2d TFT, while the second describes Z-graded theories, such as those associated with the

bounded derived category of coherent sheaves on a generic compact Calabi-Yau manifold.

This last case was discussed in appendix A of [23].

4. G-graded dG categories

In open topological field theory, Z-graded associative categories often appear as total co-

homology categories of differential graded (dG) categories. In this section, we extend this
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construction to the G-graded case. After a brief general discussion, we construct a dG

category with shifts whose objects are graded integrable modules ‘with extended grading’

over a curved differential graded algebra. A particular case of this construction will allow

us to give a description of graded D-branes in Landau-Ginzburg models which manifestly

displays the grading by characters of the surviving group of vector and axial R-symmetries.

Let G be an Abelian group endowed with a pairing (=biadditive map) · : G×G → Z2

and fix an element δ ∈ G.

Definition. A graded dG category of type (G, δ) is a G-graded C-category D whose

morphism spaces are endowed with linear maps dab : HomD(a, b) → HomD(a, b) which are

homogeneous of degree δ and satisfy the following conditions:

(i) d2
ab = 0 for all a, b ∈ ObD

(ii) dac(vu) = dbc(v)u + (−1)δ·degvvdab(u) for all homogeneous u ∈ HomD(a, b) and v ∈

HomD(b, c).

Notice that the definition makes use of the pairing · : G× G → Z2. In the application

to open 2d TFTs, this pairing will have the form:

g1 · g2 := ǫ(g1)ǫ(g2) , (4.1)

where ǫ : G → Z2 is the group morphism used in section 1 and in the right hand side we

use the ring multiplication of Z2.

We define the total cohomology category H(D) to be the G-graded category having the

same objects as D and morphism spaces given by HomH(D)(a, b) := ⊕g∈G Homg
H(D)(a, b),

where:

Homg
H(D)(a, b) := [ker(dab) ∩ Homg

D(a, b)]/[dab(Homg−δ
D (a, b))] .

Given any closed morphism φ ∈ HomD(a, b), we let φH ∈ HomH(D)(a, b) be the induced

morphism in H(D). We also let Z(D) be the category obtained from D by keeping only

closed morphisms.

A twisted dG automorphism of D is a pair (F,χ) such that χ is a non-vanishing complex

number and F is an automorphism of the underlying associative category, which satisfies

the condition:

Fab(dab(u)) = χdF (a)F (b)(Fab(u)) (4.2)

for all morphisms u ∈ HomD(a, b). Twisted dG automorphisms form a group with the

composition rule (F,χ) ◦ (F ′, χ′) = (F ◦ F ′, χχ′) (the identity element is (idD, 1)). We will

denote this group by Auttw(D). Notice that any twisted dG automorphism F of D induces

an automorphism FH of H(D) by passage to cohomology.

Definition. A dG category with shifts is a system (D, G, δ, γ, s) such that:

(i) D is a graded dG category of type (G, δ)

(ii) γ : G → Auttw(D) is a group monomorphism.
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(iii) s(g) : idD
∼
→ γ(g) are closed isomorphisms of functors subject to conditions (3.1)

and (3.2) (with G replaced with D).

The closure condition on s(g) means da,γ(g)(a)(sa(g)) = 0 for all a ∈ ObD and all g ∈ G.

This implies4 that sa(g) descend to isomorphisms sH
a (g) in H(D).

It is easy to see that the total cohomology category H(D) of a graded dG category

with shifts is a graded category with shifts, whose shift functors and suspensions γH , sH

are induced from γ, s by passage to cohomology. More precisely, (H(D), G, γH , sH) is a

G-graded category with shifts.

4.1 Integrable modules over a curved differential graded algebra

In this subsection, we discuss a class of graded dG categories which generalizes a con-

struction considered in [20]. As we will see below, this affords a ‘manifestly symmetric’

description of the dG category of graded D-branes in Landau-Ginzburg models.

Modules with extended grading over a graded algebra. Let GV be an Abelian

group and B a GV -graded associative algebra. Given another Abelian group G and a

morphism ψ : GV → G, a right extended-graded module of type (G,ψ) over B is a right

B-module M endowed with a vector space decomposition:

M = ⊕g∈GMg , (4.3)

such that MgBk ⊂ Mg+ψ(k) for all g ∈ G and k ∈ GV . Given such a module, we set

deg(m) = g for m ∈ Mg. A decomposition (4.3) with this property will be called a

extended graded structure of type (G,ψ) on M . Given two such modules M,N , we define:

Homg
B(M,N) := {f ∈ HomB(M,N)|f(Mh) ⊂ Mg+h ∀h ∈ G}

and Homgr
B (M,N) := ⊕g∈G Homg

B(M,N). This gives a G-graded category denoted GrG,ψ
B .

Notice that Gr
GV ,idGV

B coincides with the usual category of graded B-modules.

Twist functors and suspensions. Given g ∈ G, we let (g) ∈ Aut0[GrG,ψ
B ] denote the

twist functor by (g). This acts on objects via M(g)h := Mh+g and takes a morphism

u ∈ Homh
B(M,N) into the same map u but viewed as an element of Homh

B(M(g), N(g)).

We have (g) ◦ (h) = (g + h) for all g, h ∈ G, as well as the relation Homh
B(M,N(g)) =

Homh+g
B (M,N).

Let sM(g) be the g-th suspension morphism of M , i.e. the identity morphism of a

viewed as an element of Hom−g
B (M,M(g)). These maps define isomorphisms of functors

s(g) : id
GrG,ψ

B

∼
→ (g). Setting γ̃(g) := (g), it is clear that (3.2) holds. Thus (GrG,ψ

B , G, γ̃, s) is

a graded category with shifts. We let grG,ψ
B denote the full subcategory of GrG,ψ

B consisting

of finitely-generated modules. This is again a graded category with shifts.

4It is easy to check that the inverse of any closed and homogeneous isomorphism φ is closed and homo-

geneous of opposite degree, and induces the inverse of φH on cohomology.
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Free extended-graded modules. An extended-graded module M ∈ Ob[Gr
(G,ψ)
B ] will

be called free if it admits a basis es all of whose elements are G-homogeneous. In this case,

we have a decomposition:

M = ⊕sesB (4.4)

and

Mg = ⊕s,k:gs+ψ(k)=gesB
k . (4.5)

Change of grading. The collection of pairs (G,ψ) where G is a group and ψ : GV → G

is a group morphism forms a category Λ whose morphisms (G,ψ) → (G′, ψ′) are maps

µ : G → G′ such that µ ◦ ψ = ψ′. Given µ ∈ HomΛ((G,ψ), (G′ , ψ′)) and M in GrG,ψ
B , we

let µ∗(M) be the object of GrG′,ψ′

B defined by the decomposition µ∗(M) = ⊕g′∈G′µ∗(M)g
′
,

where µ∗(M)g
′

:= ⊕g∈G:µ(g)=g′M
g (it is easy to check that the condition µ∗(M)g

′
Bk ⊂

µ∗(M)g
′+ψ′(k) is satisfied). Notice that we set µ∗(M)g

′
= 0 if g′ /∈ µ(G). It is clear that

a homogeneous morphism u ∈ Homh
GrG,ψ

B

(M,N) satisfies u(µ∗(M)g
′
) ⊂ µ∗(M)g

′+µ(h), and

we let µ∗(u) ∈ Hom
µ(h)

GrG′,ψ′

B

(µ∗(M), µ∗(N)) be the morphism of GrG′,ψ′

B obtained in this

manner. Then µ∗ gives a functor from GrG,ψ
B to GrG′,ψ′

B . Given composable morphisms

µ, ν in Λ, one has (µ ◦ ν)∗ = µ∗ ◦ ν∗. Further, the identity automorphism of (G,ψ) induces

the identity automorphism of GrG,ψ
B . These observations imply that any isomorphism

µ : (G,ψ) → (G′, ψ′) of Λ induces an isomorphism of categories µ∗ : GrG,ψ
B → GrG

′,ψ′

B , so

we can identify the categories of graded modules defined by isomorphic pairs (G,ψ).

Extensions of grading. Consider a GV -graded algebra B, and let B# be the associative

algebra obtained from B by forgetting the grading. Fixing an Abelian group GA, consider

the category GrGA

B# of GA-graded modules over B# (where B# is viewed as a graded algebra

concentrated in degree zero). The objects of GrGA

B# are B#-modules M endowed with a

decomposition of the form M = ⊕α∈GA
Mα into B#-submodules.

Consider a short exact sequence:

(E) 0 → GV
ψ
→ G

ǫ
→ GA → 0 (4.6)

representing an extension class ξ ∈ Ext1Z(GA, GV ). Notice that GrGA

B# = Gr
(GA,0)
B , where

0 is the null morphism from GV to GA. Since ǫ ◦ µ = 0, we can view ǫ as a morphism in

HomΛ((G,ψ), (GA , 0)). This induces a functor ǫ∗ : Gr
(G,ψ)
B → GrGA

B# . Since ǫ is surjective,

we have ǫ∗(M) = M as vector spaces, and we set Mα := ǫ∗(M)α = ⊕g∈G:ǫ(g)=αMg for all

α ∈ GA.

Given an object M of GrGA

B# , an extension of grading of M along the exact sequence

(E) is an extended graded module structure M = ⊕g∈GMg of type (G,ψ) such that

Mα = ⊕ǫ(g)=αMg for all α ∈ GA, i.e. such that the ǫ∗-image of the extended-graded B-

module obtained in this manner recovers M . Such a structure exists iff M belongs to the

image of the functor ǫ∗ : Gr
(G,ψ)
B → GrGA

B# , in which case we say that M is gradable along

(E).

Recall that extensions of GA by GV form a category. Given another extension (E′) 0 →

GV
ψ′

→ G′ ǫ′
→ GA → 0, the morphisms (E) → (E′) are given by maps µ : G → G′ such that
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µ ◦ ψ = ψ′ and ǫ′ ◦ µ = ǫ. In particular, µ is a morphism in Λ from (G,ψ) to (G′, ψ′), so it

induces a functor µ∗ : GrG,ψ
B → GrG′,ψ′

B . We thus have a triple of functors (µ∗, ǫ∗, ǫ
′
∗) which

satisfy ǫ′∗ ◦ µ∗ = ǫ∗, and µ∗ is an isomorphism of categories when µ is an isomorphism of

groups. When µ is an isomorphism, this shows that ǫ∗ and ǫ′∗ can be identified consistently

with the identification of GrG,ψ
B and GrG′,ψ′

B via µ∗. It follows that extensions of grading

are essentially determined by the extension class ξ of the sequence (E).

Component description. Given M ∈ Ob[GrGA

B# ] endowed with an extension of grading

along (E), the GA-components Mα become graded B-modules via the following construc-

tion. Let us pick elements gα ∈ G such that ǫ(gα) = α for each α ∈ GA. Then the

ǫ-preimage of α consists of the elements g = gα + ψ(k) with k ∈ GV . Defining:

Mk
α := Mgα+ψ(k) ∀α ∈ GA ,∀k ∈ GV , (4.7)

it is clear that Mk
αBl ⊂ Mk+l

α . Thus the decomposition Mα = ⊕g∈G:ǫ(g)=αMg = ⊕k∈GV
Mk

α

gives a GV -grading of the module Mα, and M can be viewed as direct sum of graded

B-modules. Given another choice of elements g′α ∈ G such that ǫ(g′α) = α, we have

g′α − gα = ψ(kα) for some kα ∈ GV , so the B-graded module structures (M ′)kα = Mg′α+ψ(k)

determined by this new choice on Mα are related to (4.7) via the twists:

M ′
α = Mα(kα) . (4.8)

It follows that the GV -gradings on Mα are determined by the G-grading on M up to

independent twists. We stress that the gradings on Mα depend on the choice of gα.

Conversely, any collection (Mα)α∈GA
of GV -graded modules defines an object M :=

⊕α∈GA
Mα of GrGA

B# which is (E)-gradable for any fixed extension (4.6). To see this, pick

elements gα ∈ G such that ǫ(gα) = α. Given g ∈ G, set α := ǫ(g). Then g − gα ∈

kerǫ = im ψ, so there exists a unique k ∈ GV such that g = gα + ψ(k). This shows that

the map (k, α) ∈ GV × GA
f
→ ψ(k) + gα ∈ G is a bijection. Defining Mg := Mk

α where

(k, α) = f−1(g), we can thus write the linear subspace decomposition M = ⊕α∈GA,k∈GV
Mk

α

as M = ⊕g∈GMg. It is clear that the condition Mk
αBl ⊂ Mk+l

α implies MgBl ⊂ Mg+ψ(l).

Thus M endowed with this G-grading is an extended graded module of type (G,ψ) over B,

and ǫ∗(M) recovers the original object of GrGA

B# . If we pick other elements g′α ∈ ǫ−1({α}),

then g′α − gα = ψ(kα) for some kα ∈ GV and we find that the G-grading determined by g′α
is related to that given by gα via:

M ′g = Mg−ψ(kǫ(g)) . (4.9)

Hence the choice of the extension (E) determines the G-grading on M up such transfor-

mations. This discussion establishes the following:

Proposition. The following statements are equivalent for any object M of GrGA

B# :

(a) M is gradable along some extension (E) of type (4.6)

(b) M is gradable along any extension (E) of type (4.6)

– 15 –



J
H
E
P
0
8
(
2
0
0
7
)
0
8
8

(c) Each of the B#-submodules Mα admits a structure of graded B-module.

In this case, the extension (E) together with the graded B-module structures on Mα

determine the G-grading on M up to transformations of the form (4.9), while (E) and

the G-grading on M determines the GV -gradings on Mα up to independent twists of the

form (4.8).

The proposition shows that the notion of module with extended grading is essentially the

same as a collection of graded B-modules. The gain afforded by the former language is

that it manifestly displays the larger group G.

Component description of free extended-graded modules Consider an extended-

graded module of type (G,ψ) over B and fix an extension (E) as in (4.6). Also pick

elements gα ∈ G such that ǫ(gα) = α for all α ∈ GA. Then it is easy to see that M is free

as an extended-module iff all of the graded B-modules Mα determined by gα are free. We

leave the details as an exercise for the reader.

Curved differential graded algebras. Consider an Abelian group GV endowed with a

pairing · : GV ×GV → Z2. A GV -graded curved differential graded algebra (CdGA) over C

is a triple (B, d, c) where B is a GV -graded associative algebra over C, c is a homogeneous

element of B and d is a homogeneous derivation of B such that d2(b) = [c, b] for all b ∈ B,

where [b1, b2] := b1b2− (−1)degb1·degb2b2b1 denotes the graded commutator (computed using

the pairing on GV ). If c 6= 0, then we let h ∈ GV denote the degree of c. The Leibniz

condition for the derivation d takes the form:

d(b1b1) = d(b1)b2 + (−1)deg(d)·deg(b1)b1d(b2) . (4.10)

Notice that we must have 2deg(d) = h unless c = 0 or d is identically zero. When c = 0,

the pair (B, d) is a GV -graded differential algebra (a GV -graded differential category with

one object). The case d = 0 is also special. In this case, (B, 0, c) is a curved dGA iff c is a

homogeneous central element of B, since the condition d2(b) = [c, b] becomes [c, b] = 0 for

all b ∈ B. Then (4.10) is trivially satisfied and there are no constraints on the degree of c.

Integrable modules over a curved dGA. Let us fix an Abelian group G with a

pairing · : G × G → Z2 and a group morphism ψ : GV → G. Also fix an element δ ∈ G.

A connection of degree δ on M ∈ Ob[grG,ψ
B ] is a C-linear map D : M → M satisfying the

homogeneity condition:

degD(m) = degm + δ (4.11)

and the Leibniz identity:

D(mb) = D(m)b + (−1)δ·degm md(b) . (4.12)

These relations require δ = ψ(degd) unless d = 0, in which case δ is unconstrained.

An integrable module of type (G,ψ, δ) over B is a pair M := (M,D) such that M is a

finitely-generated right extended-graded B-module of type (G,ψ) and D is a connection of

degree δ on M , subject to the condition:

D2(m) = mc ∀m ∈ M . (4.13)
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This equation requires 2δ = ψ(h), which is compatible with the previous constraint δ =

ψ(degd) when d 6= 0 (since 2degd = h in that case). Notice that (4.13) constrains δ also

for the case d = 0.

It is easy to check that integrable modules of type (G,ψ, δ) form a dG category

DGG,ψ,δ
c (B) of type (G, δ), with morphism spaces given by Hom

DGG,ψ,δ
c (B)

(M, N) :=

Homgr
B (M,N) and differentials defined through dMN(u) := DN ◦ u − (−1)δ·deguu ◦ DM

for homogeneous u ∈ Homgr
B (M,N).

A particular case. A particularly simple case arises when the differential on B vanishes

(thus c must be a homogeneous central element of B, and we assume c 6= 0). In this case,

D is a homogeneous module endomorphism of M of degree δ which satisfies (4.13); this

requires 2δ = ψ(h) where h = degc.

The twist functors of grG,ψ
B induce twist functors on DGG,ψ,δ

c (B) as follows. For any

object M = (M,D), we set M(g) := (M(g),D(g)), where D(g) is the result of acting

on the module endomorphism D with the twist functor of grG,ψ
B . We let (g) act on the

morphisms of DGG,ψ,δ
c (B) in the same way as in GrG,ψ

B . It is easy to check that (g) are

dG-automorphisms, making DGG,ψ,δ
c (B) into a dG category of type (G, δ).

The maps sM(g) := sM (g) ∈ Hom−g
B (M,M(g)) = Hom−g

DGG,ψ,δ
c (B)

(M, M(g)) give iso-

morphisms of functors from id
DGG,ψ,δ

c (B)
to (g). In general, these isomorphisms are not

closed, so they cannot be used to make DGG,ψ,δ
c (B) into a graded category with shifts.

Indeed, they satisfy DM(g) ◦ sM (g) = sM (g) ◦ DM rather than the closure condition

dMM(g)(sM (g)) = DM(g) ◦ sM(g) − (−1)δ·gsM (g) ◦ DM = 0. This can be remedied in

the following situation, which will be relevant below.

Let us assume given an exact sequence of the form (4.6) with GA = Z2 and consider

the pairing on G given in (4.1). Define automorphisms γ(g) of the underlying associative

category of DGG,ψ,δ
c (B) via:

γ(g)(M,D) = (M(g), (−1)ǫ(g)ǫ(δ)D(g)) (4.14)

and:

γMN(g)(u) := u(g) ∀u ∈ Hom
DGG,ψ,δ

c (B)
(M, N). (4.15)

We have γ(g1)γ(g2) = γ(g1 + g2) for all g1, g2 ∈ G. Then γ(g) are twisted dG functors,

namely they satisfy:

dγ(g)(M)γ(g)(N) ◦ γMN(g) = χ(g)γMN(g) ◦ dMN (4.16)

for the character χ(g) = (−1)ǫ(g)ǫ(δ) of G. On the other hand, the maps sM(g) = sM (g)

are closed when viewed as elements of Hom−g

DGG,ψ,δ
c (B)

(M, γ(g)(M)), and we find that

(DGG,ψ,δ
c (B), G, δ, γ, s) is a dG category with shifts. Passing to the total cohomology

category G := H(DGG,ψ,δ
c (B)), we have induced automorphisms γG(g) of G and morphisms

of functors sG(g) : idG → γG(g) of degree −g making (G, G, γG , sG) into a graded category

with shifts.

Consider the dG category DG
Z2,0,ǫ(δ)
c (B), where 0 is the null morphism form GV to

GA = Z2. This consists of pairs M = (M,D) with M ∈ Ob[grZ2

B# ] and D ∈ EndB#(M)
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a homogeneous module endomorphism of degree ǫ(δ) satisfying D2 = c (recall that B# is

concentrated in degree zero). The homogeneity condition on D means D(Mα) = Mα+ǫ(δ).

The functor ǫ∗ : GrG,ψ
B → GrZ2

B# induces a dG functor ǫ̃∗ : DGG,ψ,δ
c (B) → DG

Z2,0,ǫ(δ)
c (B),

defined through ǫ̃∗(M,D) = (ǫ∗(M), ǫ∗(D)) on objects and ǫ̃∗(u) := ǫ∗(u) on morphisms.

An object of DG
Z2,0,ǫ(δ)
c (B) is called gradable along (E) if it lies in the image of this

functor. Picking elements gα ∈ G such that ǫ(gα) = α, consider the GV -grading of Mα

defined as in the previous subsection. Then it is easy to see that gradability of M reduces

to gradability of M (i.e. the condition that M are graded B-modules) and the condition

that the components Dα,α+ǫ(δ) ∈ HomB(Mα,Mα+ǫ(δ)) of D are GV -homogeneous of degree

δ + gα − gα+ǫ(δ).

5. Application to graded B-type branes in Landau-Ginzburg models

In this section, we reconsider the case of graded B-type branes in Landau-Ginzburg models,

giving a complete treatment of the vector and axial gradings. While this was already

studied in [9, 10, 12] from various perspectives, we will see in a moment that the grading

induced by vector and axial R-symmetries on the corresponding open 2d TFT is a bit

subtle. The reason is that the total grading arises from a group extension of the axial

Z2-grading by the vector Z-grading, and this extension is nontrivial when the degree of the

bulk superpotential is odd. We will also give a complete description of the open 2d TFT

defined by graded D-branes, as well as its precise relation with the triangulated category of

matrix factorizations considered in [10]. Using this correspondence will allow us to extract

a precise proposal for the Serre functor on the latter.

Consider the B-twisted topological Landau-Ginzburg model with target C
n and coor-

dinate ring B := C[φ1 . . . φn]. The U(1) vector R-symmetry induces a GV = U(1)∗ = Z-

grading of B with degφi = qi, where we take qi to be integral (see appendix B for the

worldsheet realization). From the worldsheet perspective, this corresponds to a normaliza-

tion in which the bulk superpotential W ∈ B has integral degree h. We endow the group

GV = Z with the trivial pairing m ·n = 0 (this is insures that the graded commutator in B

is the usual commutator). Then the bulk model is encoded by the commutative Z-graded

curved dGA (B, 0,W ), which has trivial differential.

5.1 The dG category of graded D-branes

As explained in appendix B, the axial R-symmetry is broken by the boundary conditions

to a subgroup ΓA ≈ Z2, so the surviving vector-axial R-symmetry group is Γ = ΓV ×ΓA =

U(1) × Z2. It turns out that the subgroup Γ0 which acts trivially on the boundary data

depends on the parity of h. Namely, Γ0 is trivial for even h, while for odd h one finds that

Γ0 is a Z2 subgroup. As a consequence, the faithfully acting group Γ′
h := Γ/Γ0 is given by:

Γ′
h =

{

U(1) × Z2 for h ∈ 2N ,

U(1) for h ∈ 2N + 1
,
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with group of characters:

Gh = (Γ′
h)∗ =

{

Z × Z2 for h ∈ 2N ,

Z for h ∈ 2N + 1
. (5.1)

When h is odd, the vector and axial gradings on the spaces of boundary and boundary

condition changing observables combine into a single Z-grading and thus they cannot be

treated as independent. One has a group extension:

0 → Z
ψh→ Gh

ǫh→ Z2 → 0 , (5.2)

which is trivial only for even h. Here GV = Z and GA = Z2. The morphisms ψh, ǫh are

given by (see appendix B):

ψh(k) =

{

(k, 0) for h ∈ 2N ,

2k for h ∈ 2N + 1
. (5.3)

and
{

ǫh(k, α) = α for h ∈ 2N,

ǫh(k) = k (mod 2) for h ∈ 2N + 1
. (5.4)

We will use the pairing (4.1) on the group Gh.

The most general topological D-branes of the model form the the full dG category

DGW (B#) of DGZ2,0,1̂
W (B) consisting of free graded B#-modules (recall that B# is viewed

as a graded algebra concentrated in degree zero). This is the well-known dG category of

matrix factorizations discussed in [24, 25].

As shown in appendix B, ‘graded topological D-branes’ (i.e. those topological D-branes

which preserve the vector R-symmetry) correspond to objects of DGW (B#) which are freely

extended-graded along the extension (5.2). More precisely, such branes are described by

integrable B-modules M = (M,D) of type (Gh, ψh, δh), where M is free as an extended-

graded module and:

δh := deg(D) =

{

(h
2 , 1̂) ∈ Z × Z2 for h ∈ 2N ,

h ∈ Z for h ∈ 2N + 1
. (5.5)

Notice that ǫh(δh) = 1̂, and 2δh = ψh(h), as required. Since (B, 0,W ) has trivial dif-

ferential, D is a simply a module endomorphism of M of Gh-degree δh, which satisfies

D2 = W . This gives the following description, which is quite similar in spirit to that used

in [13, 14, 16, 20] for the case of B-type branes on Calabi-Yau manifolds. We can take it

as a mathematical definition:

The dG category of graded D-branes defined by the LG model with bulk data (B,W )

is the full dG subcategory DGgr
W (B) of DGGh,ψh,δh

W (B) consisting of free extended-graded

modules.

Notice that this description manifestly displays the vector-axial grading group Gh.

The total cohomology category G := H(DGgr
W (B)) is the category of boundary sectors.

The dG category DGgr
W (B) is a dG category with shifts of type (Gh, δh, γh, sh), where the
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twisted dG automorphisms γh(g) are defined as in (4.14) and the suspensions sh(g) are

as described in the previous section. These descend to automorphisms γG
h (g) of G and

morphisms of functors sGh(g) : idG → γG(g), making G into a graded category with shifts of

type (Gh, γG
h , sGh). Its null restriction T := G0 = H0(DGgr

W (B)) is the triangulated category

of matrix factorizations considered in [10] and [12].

5.2 Shift functor and distinguished twist functor

Consider the functors Th := γh(gT ), τh := γh(gτ ) and ρh = γh(gρ), where gT , gτ and gρ are

given by:
{

gτ = (1, 0̂) , gT = (h
2 , 1̂) , gρ = (0, 1̂) for h ∈ 2N ,

gτ = 2 , gT = h , gρ = 1 for h ∈ 2N + 1
(5.6)

We have gT = δh, ǫh(gτ ) = 0̂ and ǫh(gT ) = ǫh(gρ) = 1̂. Notice the relation g2
T = gh

τ , which

implies

T 2
h = (τh)h , (5.7)

as well as the relation gT = gρ + [h2 ]gτ , which gives

Th = ρh ◦ (τh)[
h
2
] . (5.8)

Here [ ] denotes the integer part. Using these equations, it is easy to check that the

subgroup of Auttw(DGgr
W (B)) generated by Th and τh is isomorphic with Gh. In fact, the

representation γh takes the form:






γh(k, α) = τk
hρα

h = Tα
h τ

k−αh
2

h for h ∈ 2N ,

γh(k) = ρk
h = T k

h τ
−

k(h−1)
2

h for h ∈ 2N + 1
(5.9)

Passing to zeroth cohomology, the functor Th induces the shift functor T T
h = [1] of the

triangulated category T . It also turns out that functor τT
h induced by τh on T coincides

with the ‘distinguished’ twist functor considered in [10, 12] (see the last subsection below).

5.3 Traces

Given an object M = (M,D) of DGgr
W (B), the free graded module M can be decomposed

as:

M = ⊕sesB ,

where es is a G-homogeneous basis of M with deges = gs ∈ G. With respect to such

a basis, a module endomorphism u ∈ HomB(M,M) has a matrix with entries ust ∈ B

determined by the decomposition:

u(es) =
∑

t

etuts .

This allows one to define a linear map StrM : HomDGgr
W

(B)(M, M) → B via:

StrM(u) :=
∑

s

(−1)ǫh(gs)uss .
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When u is homogeneous of degree g ∈ G, we have uts = 0 unless ψh(deguts) = g + gs − gt.

This implies ψh(deg(StrM(u)) = g unless StrM(u) = 0. In particular, we have StrM(u) = 0

unless ǫ(g) = 0̂. It is easy to check the relations:

StrM(uv) = (−1)ǫh(degu)ǫh(degv) StrN(vu) (5.10)

for homogeneous u ∈ HomDGgr
W

(B)(N, M) and v ∈ HomDGgr
W

(B)(M, N), as well as the rela-

tion:

StrM(g)(u(g)) = (−1)ǫh(g) StrM(u) , (5.11)

where (g) is the twist by g.

The category Z(DGgr
W (B)) is endowed with the traces of [5, 8]:

tr M(u) :=

∮

dφ1 . . . dφn

(2πi)n
StrM[(∂D)nu]

∂1W . . . ∂nW
(u ∈ Z(HomDGgr

W
(M, M))) , (5.12)

where M = (M,D) and (∂D)n := ∂1D . . . ∂nD. Notice that ∂iD ∈ Hom
δh−ψh(qi)
B (M,M),

so deg(∂D)n = nδh − ψh(
∑n

i=1 qi). The traces are easily seen to satisfy tr M(dMM(u)) = 0

as well as

tr M(uv) = (−1)ǫh(degu)ǫh(degv)tr N(vu) (5.13)

for homogeneous u ∈ HomDGgr
W

(B)(N, M) and v ∈ HomDGgr
W

(B)(M, N). They also satisfy

the selection rule:

tr M(u) = 0 unless deg(u) = κh , (5.14)

where κh ∈ Gh is given by κh = nδh − ψh(
∑n

i=1 qi), i.e.:

κh =

{

(h
2 ĉ, n mod 2) = (nh

2 −
∑n

i=1 qi, n mod 2) ∈ Z × Z2 for h ∈ 2N ,

hĉ = nh − 2
∑n

i=1 qi ∈ Z for h ∈ 2N + 1
. (5.15)

Here:

ĉ = n −
2

h

n
∑

i=1

qi (5.16)

is the conformal anomaly. To establish (5.14), notice that the integral
∮ dφ1...dφn

(2πi)n f(φ1 . . . φn)

of a homogeneous rational function of φ1 . . . φn vanishes unless f has degree −
∑n

i=1 qi.

Using this observation, it follows that (5.12) vanishes for homogeneous u un-

less deg(StrM[(∂D)nu]) = deg(∂1W . . . ∂nW ) −
∑n

i=1 qi = nh − 2
∑n

i=1 qi. Since

ψh(deg StrM[(∂D)nu]) = ψh(deg[(∂D)nu]) when the left hand side is nonzero, we find

that (5.12) vanishes unless ψh(degu) = ψh(nh − 2
∑n

i=1 qi) − ψh(deg[(∂D)n]) = n(ψh(h) −

δh) − ψh(
∑n

i=1 qi) = κh, where we used the relation ψh(h) = 2δh.

Finally, notice that equation (5.11) implies the relation:

tr M(g)u(g) = (−1)ǫh(g)tr M(u) , (5.17)

which is equivalent with the equivariance conditions (recall the definition (4.14)):

tr γh(g)(M)γh(g)(u) = (−1)ǫh(g)(ǫh(κh)+1)tr M(u) , (5.18)

where we noticed that ǫh(nδh) = ǫh(κh) = n (mod 2). Setting g = gτ or g = gT , the last

equation gives:

tr τh(M)(τh(u)) = tr M(u) , tr Th(M)Th(u) = (−1)n+1tr M(Th(u)) . (5.19)
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5.4 The graded topological field theory with shifts

The traces (5.12) descend to the total cohomology category G, inducing maps which we

denote by tr G . Assuming that tr G are nondegenerate, the discussion above shows that

(G, Gh, γG
h , sGh , tr G , κh, ǫh) is a graded open 2d TFT with shifts in the sense of section 3.

Consider the triangulated category T = G0 of graded matrix factorizations. We let

γT
h be the functor induced from γG

h by restriction to morphisms of degree zero. As in

section 3.2, T carries traces trT
M

: HomT (M, γh(κ)(M)) → C induced from G, which make

it into a graded cyclic category. Equations (5.15) and (5.9) imply that the Serre functor

Sh = γh(κh) defined by this cyclic structure takes the form:

Sh =







τ
hĉ
2

h ρn
h = T n

h τ
h
2
(ĉ−n)

h for h ∈ 2N ,

ρhĉ
h = T hĉ

h τ
−

h(h−1)
2

ĉ

h for h ∈ 2N + 1
. (5.20)

As in section 2, the graded category with shifts G can be recovered as the skew category

G = T •[Gh]. Combining everything, we conclude:

Assume that (5.12) is homologically nondegenerate, i.e. the trace tr G induced on G is

nondegenerate. Then the system (G, Gh, γG
h , sGh , tr G , κh, ǫh) is a graded open 2d TFT with

shifts and the corresponding system (T , Gh, γT
h , trT , κh, ǫh) is an equivariant cyclic category.

In particular, (5.20) is an equivariant Serre functor on T under this assumption, when

considered together with the isomorphisms HomT (M, N) → HomT (N, γh(κ)(M))v induced

by trT .

The two descriptions are related as explained in section 2.2. Since homological node-

generacy of (5.12) has not been proved in general, we can view (5.20) as a conjecture for

the form of the Serre functor on T . We can test this in two particular cases for which the

Serre functor is independently known.

Example 1: minimal Landau-Ginzburg models. Consider a minimal model at the

conformal point. Then one can take n = 3 and B = C[φ1, φ2, φ3]. The weights qi of φi and

h of W combine in the a regular weight vector w := (q1, q2, q3;h) with:

3
∑

i=1

qi = h + 1 . (5.21)

It is well-known that such weight vectors have an ADE classification, corresponding to the

type of the surface singularity defined by W . Namely, we have

w =



























(1, b, l + 1 − b; l + 1), b = 1 . . . l for Al (l ≥ 1),

(l − 2, 2, l − 2; 2(l − 1)) for Dl (l ≥ 4),

(4, 3, 6; 12) for E6,

(6, 4, 9; 18) for E7,

(10, 6, 15; 30) for E8 .
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and the bulk superpotential can be brought to the form:

W (x, y, z) =



























xl+1 + yz, for Al (l ≥ 1),

x2y + yl−1 + z2, for Dl (l ≥ 4),

x3 + y4 + z2, for E6,

x3 + xy3 + z2, for E7,

x3 + y5 + z2, for E8 .

In all cases, the degree h of W coincides with the dual Coxeter number of the ADE group.

Equation (5.21) reduces to the well-known formula:

ĉ = 3 − 2
h + 1

h
= 1 −

2

h
.

Using this in equation (5.20), we find:

Sh = Thτ−1
h (5.22)

for all ADE groups. In [12], it was shown that T admits a full and strong exceptional

collection, giving a triangle equivalence T ≈ Db(modCQ), where CQ is the path algebra

of the corresponding Dynkin quiver (whose orientation can be chosen arbitrarily). More-

over, it was shown in loc. cit that τ−1
h agrees with the Auslander-Reiten translation [21]

of Db(modCQ). Thus equation (5.22) recovers the result of [28] relating the Serre and

Auslender-Reiten functors of a Hom-finite Krull-Schmidt category. Also notice that (5.7)

becomes the known relation between the Auslender-Reiten and translation functors of

Db(modCQ).

Example 2: Landau-Ginzburg models of Calabi-Yau type. A Landau-Ginzburg

model is of Calabi-Yau type if:
n

∑

i=1

qi = h . (5.23)

In this case, in was shown in [10] that T is triangle equivalent with Db(X), where X is the

Calabi-Yau hypersurface W = 0 in WCP
n−1
q1...qn

. Equation (5.23) gives:

ĉ = n − 2 = dimX .

Using this in (5.20), we find:

Sh = T dimX
h , (5.24)

which of course is the Serre functor of a Calabi-Yau variety.

5.5 Component description

An equivalent though less natural description of DGgr
W (B) can be obtained by ‘passing to

components’ as in section 4.1. For completeness, let us show explicitly how this recovers

the formulation of [10, 12].

As explained in section 4.1, a graded B-module of type (Gh, ψh) can be viewed as a pair

of graded B-modules (in our case GA = Z2) which we denote by M+ = M0̂ and M− = M1̂.
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According to the general construction, we have M+ = ⊕ǫh(g)=0̂M
g, M− = ⊕ǫh(g)=1̂M

g,

and the Z-gradings on M± are specified by choosing elements g± ∈ G such that ǫh(g+) = 0̂

and ǫh(g−) = 1̂. Contact with [10, 12] is made by choosing g+ = 0 and g− = δh. With this

choice, we have M± = ⊕k∈ZMk
±, where Mk

± = Mg±+ψh(k) are given by:

Mk
+ =

{

M (k,0̂) for h ∈ 2N ,

M2k for h ∈ 2N + 1
, Mk

− =

{

M (k+ h
2
,1̂) for h ∈ 2N ,

M2k+h for h ∈ 2N + 1
.

Thus M = M+⊕M− and D can be decomposed as D =

[

0 F

G 0

]

with F ∈ Homh
B(M−,M+)

and G ∈ Hom0
B(M+,M−). The integrability condition D2 = W becomes FG = GF = W .

In this language, a homogeneous morphisms u ∈ HomDGgr
W

(M, N) decomposes as u =
[

u++ u−+

u+− u−−

]

with uαβ ∈ HomB(Mα, Nβ) and the homogeneity conditions become:

(a) When h is even, we have:

(a1) u ∈ Hom
(k,0̂)

DGgr
W

(B)
(M, N) iff u±± ∈ Homk

B(M±, N±) and u±∓ = 0

(a2) u ∈ Hom
(k,1̂)

DGgr
W

(B)
(M, N) iff u±∓ ∈ Hom

k∓h
2

B (M±, N∓) and u±± = 0.

(b) When h is odd, we have:

(b1) u ∈ Homk
DGgr

W
(B)(M, N) with k even iff u±± ∈ Homk

B(M±, N±) and u±∓ = 0

(b2) u ∈ Homk
DGgr

W
(B)(M, N) with k odd iff u±∓ ∈ Hom

k∓h
2

B (M±, N∓) and u±± = 0.

It is now clear that passing to the zeroth cohomology category T recovers the construction

of [10, 12].

A simple case by case analysis shows that the following relations hold for all h (below

(1) is the usual twist functor on the category grB of finitely generated Z-graded modules

over B):

(i) τh(M,D) = (M(gτ ),D(gτ )) with M(gτ )± = M±(1), D(gτ ) =

[

0 F (1)

G(1) 0

]

and

τh(u) = u(gτ ) =

[

u++ u−+

u+− u−−

]

=

[

u++(1) u−+(1)

u+−(1) u−−(1)

]

(ii) Th(M,D) = (M(gT ),−D(gT )) with M(gT )+ = M−, M(gT )− = M+(h), D(gT ) =
[

0 G

F 0

]

and Th(u) = u(gT ) =

[

u−− u+−

u−+ u++(h)

]

.

Passing to the zeroth cohomology category T = H0(DGgr
W (B)), it follows that τh and

Th induce the twist and shift functors considered in [10] and [12]. In this description, we

have StrM(u) = tr M+(u++) − tr M−(u−−).
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6. Conclusion

We discussed open 2d TFTs whose category of boundary sectors admits a grading by an

arbitrary Abelian group G, giving a general result which translates between the physics-

inspired formulation of such models and the mathematical theory of Serre functors. This

provides a general method for constructing open 2d TFTs with extended grading from more

traditional mathematical data. When the group G is sufficiently large, this equivalence

explains how non-Calabi-Yau categories arise in the general framework of [1, 2].

Using this formalism, we gave a careful discussion of grading issues for the category of

graded D-branes in B-type topological Landau-Ginzburg models, describing its precise re-

lation with the triangulated category of matrix factorizations, and made a specific proposal

for an equivariant Serre functor on the latter. Our result shows that the category of bound-

ary sectors can be recovered as the graded skew category of the triangulated category of [10]

with respect to the Abelian group generated by the shift and twist functors of [10, 12]. This

group depends on the parity of the bulk superpotential’s degree and recovers the correct

grading on the spaces of boundary and boundary condition changing observables. We also

gave a description of the dG category of graded D-branes which manifestly displays the

grading by characters of the full vector-axial R-symmetry preserved by such models.

A. Equivariant Serre functors

Let us fix a (not necessarily Abelian) group G. Consider a G-category (T , G, γ) and

set G∗ = Hom(G, C∗). It is well-known that Serre functors on T can be described by

pairs (S, tr) where S is an automorphism5 of T and tr is a family of linear maps tra :

HomT (a, S(a)) → C define for all a ∈ ObT , subject to the conditions:

tra(vu) = trb(S(u)v) ∀u ∈ HomT (a, b) ∀v ∈ HomT (b, S(a))

and:

tra(vu) = 0 ∀u ∈ HomT (b, S(a)) ⇒ u = 0 .

A Serre functor (S, tr) on T is called G-equivariant if S is G-equivariant and there

exists a framing η(g) : S ◦ γ(g)
∼
→ γ(g) ◦ S of S and a character χ ∈ G∗ which satisfy the

conditions:

trγ(g)(a)γ(g)(u) = χ(g)tra(γ(g)−1(ηa(g)) ◦ u) ∀a ∈ ObT ∀u ∈ HomT (a, (γ(g)−1Sγ(g))(a))

(A.1)

for all g ∈ G.

In the situation of Subsection 2.2, we have G = Abelian, S = G-invariant, η = id =

trivial framing and χ(g) = (−1)ǫ(g)(ǫ(κ)+1) for some κ ∈ G.

5One can extend this to autoequivalences, but we restrict to automorphisms for simplicity.
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B. Worldsheet analysis of R-symmetries in LG models

Consider the B-twisted topological Landau-Ginzburg model with target C
n, whose bound-

ary coupling was given in [5, 6] for the simplest D-branes and constructed for arbitrary

branes in [7, 8]. In the set-up of the latter papers, the untwisted model has world-

sheet bosons φi and φī corresponding to local complex coordinates of a non-compact

target Calabi-Yau manifold. It also has worldsheet fermions ψi
+, ψī

+ which are sections of

K
1
2⊗φ∗(T 1,0X) and K

1
2⊗φ∗(T 0,1X), as well as ψi

−, ψī
− which are sections of K̄

1
2⊗φ∗(T 1,0X)

and K̄
1
2 ⊗ φ∗(T 0,1X). Here K and K̄ are the canonical line bundle on the worldsheet and

the bundle of (0, 1) forms. Performing the B-twist as in [22] replaces ψi
+ with a section ρi

+

of K ⊗ φ∗(T 1,0X) and ψi
− with a section ρi

− of K̄ ⊗ φ∗(T 1,0X). It also replaces ψī
+ with a

section χī of φ∗(T 0,1X) and ψī
− with a section χ̄ī of the same bundle φ∗(T 0,1X). The later

combine into the new Grassmann odd fields ηī = χī + χ̄ī and θi = Gij̄(χ
j̄ − χ̄j̄). Taking

the bulk superpotential W to be homogeneous6 of degree h:

W ({e2isqiφi}) = e2ishW ({φi}) ,

the model has a vector U(1) R-symmetry which acts as:

φi → e2isqiφi , φī → e−2isqiφī ,

ψi
± → eis(2qi−h)ψi

± , ψī
± → e−is(2qi−h)ψī

± (B.1)

as well as an axial U(1) R-symmetry given by:

φi → φi , φī → φī ,

ψi
± → e∓2itψi

± , ψī
± → e±2itψī

± , (B.2)

The U(1)A group is canonically parameterized by e2it with t ∈ [0, π], while the range of s

depends on the parity of h. For even h, we take s ∈ [0, π], while for odd h we take s ∈ [0, 2π].

This insures that the action of the vector R-symmetry group is a proper representation.

Notice that for odd h, the U(1)V group is the double cover of the circle {e2is|s ∈ [0, π]}; of

course, the double cover is again a circle group. These actions translate as follows for the

Grassmann-odd fields of the twisted theory:

ρi → eis(2qi−h)ρi , ηī → e−is(2qi−h) ηī , θi → e−is(2qi−h) θi (B.3)

for U(1)V and:

ρi
± → e∓2itρi

±, , χī → e+2it χī , χ̄ī → e−2itχ̄ī (B.4)

for U(1)A. As explained in [7, 8], a general topological D-brane of this model is described

by a superbundle E = E+ ⊕ E− over the target space, together with a superconnection

6Due to the superspace formulation, it is traditional to take W to formally have degree 2 by using the

‘fractional charges’ q̃i := 2qi/h instead of qi. Here we prefer to work with integral charges since they are

directly related to the characters of U(1).
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A whose super-curvature can be taken to satisfy F (0,≤2) = W . The boundary coupling is

given by the super-Wilson loops:

U := Str Pe−
H

C
dτM . (B.5)

where C is a circle boundary of the worldsheet. The quantity M is given by:

M =

[

Â(+) + i
2(FF † + G†G) 1

2ρi
0∇iF + i

2ηī∇īG
†

1
2ρi

0∇iG + i
2ηī∇īF

† Â(−) + i
2(F †F + GG†)

]

, (B.6)

where ρi
0dτa is the pull-back of ρi to Ca and:

Â(±) := A
(±)

ī
φ̇ī +

1

2
ηīF

(±)

īj
ρj
0

are connections on the bundles E± obtained by pulling back E± to the boundary. The dot

stands for the derivative d
dτ . One has M = Â + ∆ + K, where:

∆ :=
1

2
ρi
0∂iD ,

K :=
i

2

(

ηī∇īD
† + [D,D†]+

)

and:

Â = φ̇īAī +
1

2
Fījη

īρj
0 .

Here A = Aidφi +Aīdφī = A(+) +A(−) is the direct sum connection on End(E) induced by

the 1-form part of A, while D =

[

0 F

G 0

]

∈ Endodd(E) is the zero-form part of A, which

satisfies D2 = W and plays the role of topological tachyon condensate.

Consider the coordinate ring B = C[φ1 . . . φn] of the target space C
n. Passing to

holomorphic sections of E, one finds [7, 8] that boundary conditions correspond to pairs

M = (M,D) where M is a free finitely-generated B-supermodule and D ∈ Endodd
B (M)

satisfies the constraint D2 = W . We have a Z2-graded dG category DGW (B) whose ob-

jects are pairs of this form and whose morphisms are HomDGW (B)(M, N) := HomB(M,N),

endowed with the differential dM,N(u) = DN ◦u−(−1)|u|u◦DM , where |u| ∈ Z2 denotes the

Z2-degree of u. This is the dG category of all topological D-branes. The space of boundary

observables reduces to HdMN
(HomB(M,N)).

The axial R-symmetry is broken by the boundary conditions to the subgroup ΓA ≈ Z2

whose generator corresponds to t = π
2 in (B.4), giving the residual Z2 action:

ρi → −ρi , ηī → −ηī , θi → −θī .

One finds that the boundary coupling is invariant if one takes the tachyon condensate to

transform as:

D → UADU−1
A = −D ,
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where UA =

[

1 0

0 −1

]

satisfies U2
A = 1. This shows that we must take the residual axial

R-symmetry to act on HomB(M,N) as u → UAuU−1
A , i.e.:

u → (−1)|u|u ∀ homogeneous u ∈ HomB(M,N) .

Hence the Z2-grading of DGW (B) is induced by this residual symmetry.

The connections A(±) are U(1)V -invariant, which amounts to the component transfor-

mation laws A
(±)
i ({e2isqiφi}) = e−2isqiA

(±)
i ({φi}) and A

(±)

ī
({e2isqiφi}) = e+2isqiA

(±)

ī
({φi}).

It is easy to check that the boundary coupling is U(1)V -invariant provided that F and G

satisfy:

F ({e2isqiφi}) = e2ishF ({φi}) , G({e2isqiφi}) = G({φi}) .

Indeed, this corresponds to UV (s)D({e2isqiφi})UV (s)−1 = eishD({φi}), where UV (s) :=
[

1 0

0 eish

]

gives a representation of U(1)V . Then (B.6) satisfies M({e2isqiφi}) =

UV (s)−1M({φi})UV (s) so (B.5) is invariant. We have ΓV ≈ U(1) and Γ∗
V ≈ U(1)∗ ≈ Z.

To take the vector R-symmetry into account, we grade the ring B by associating weights

qi to φi. The analysis of [9] shows that U(1)V -invariant boundary conditions correspond

to those pairs M = (M,D) ∈ ObDGW for which M± are free graded B-modules and

D =

[

0 F

G 0

]

is such that F and G are homogeneous of degrees h and 0 respectively. We

will refer to this grading as the ‘vector grading’. The dG category of ‘graded branes’ is the

full subcategory DGgr
W (B) of DGW (B) consisting of such pairs; this is the dG category of

those topological D-branes whose boundary conditions preserve the full U(1)V symmetry.

For any objects M and N of DGgr
W , we have an action of U(1)V on HomB(M, N) given by:

u → UV (s)u({e2isqiφi})UV (s)−1 , (B.7)

as well as the action of the axial Z2 symmetry:

u → UAuU−1
A . (B.8)

Since [UA, UV (s)] = 0, these combine into an action of the group Γ = ΓV ×ΓA ≈ U(1)×Z2.

The morphism u ∈ HomDGgr
W

(B)(M, N) is ‘vector homogeneous’ of degree q ∈ 1
2Z if it

satisfies:

UV (s)u({e2isqiφi})UV (s)−1 = e2isqu({φi}) .

With this definition, the condensate D of every object M = (M,D) of DGgr
W (B) is homo-

geneous of vector degree h
2 . Writing u =

[

u++ u−+

u+− u−−

]

with uαβ ∈ HomB(Mα, Nβ), this

condition amounts to:

degu++ = degu−− = q , degu−+ = q +
h

2
, degu+− = q −

h

2
.
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Since uαβ must have integral degrees, this requires q ∈ Z for u ∈ Hom0̂
DGgr

W
(B)(M, N) and

q ∈ Z + h
2 for u ∈ Hom1̂

DGgr
W

(B)(M, N). We find the decompositions:

Hom0̂
DGgr

W
(B)(M, N) = ⊕q∈ZHom

[q,0̂]

DGgr
W

(B)
(M, N)

Hom1̂
DGgr

W
(B)(M, N) = ⊕q∈Z+ h

2
Hom

[q,1̂]

DGgr
W

(B)
(M, N) .

We have DM ∈ Hom
[ h
2
,1̂]

DGgr
W

(B)
(M, M), so the differential dM,N satisfies:

dM,N(Hom
[q,α]

DGgr
W

(B)
(M, N)) ⊂ Hom

[q+ h
2
,α+1̂]

DGgr
W

(B)
(M, N) . (B.9)

When h is even, we have Z + h
2 = Z and the decompositions above give a Z × Z2-grading:

HomDGgr
W

(B)(M, N) = ⊕q∈Z,α∈Z2Hom
[q,α̂]

DGgr
W

(B)
(M, N) .

When h is odd, we have Z + h
2 = (1

2Z) \ Z and we find a 1
2Z-grading:

HomDGgr
W

(B)(M, N) = ⊕q∈ 1
2

Z
Hom

[q]

DGgr
W

(B)
(M, N) ,

where Hom
[q]

DGgr
W

(B)
(M, N) := Hom

[q,0̂]

DGgr
W

(B)
(M, N) if q ∈ Z and Hom

[q]

DGgr
W

(B)
(M, N) :=

Hom
[q,1̂]

DGgr
W

(B)
(M, N) if q ∈ (1

2Z) \ Z.

It is easy to see that both of these decompositions are compatible with the composition

of morphisms. Equation (B.9) shows that dMN are homogeneous of bidegree (h
2 , 1̂) ∈ Z×Z2

when h is even, and of degree h
2 ∈ Z when h is odd. Setting:

Gh =

{

Z × Z2 for h ∈ 2N ,

Z for h ∈ 2N + 1
,

as in (5.1), we redefine the grading for odd h so that all degrees become integral. Thus we

set HomDGgr
W

(B)(M, N) = ⊕g∈Gh
Homg

DGgr
W

(B)
(M, N), where

Homg
DGgr

W
(B)

(M, N) =







Hom
[k,α]

DGgr
W

(B)
(M, N) for h ∈ 2N and g = (k, α) ∈ Z × Z2 ,

Hom
[k/2]

DGgr
W

(B)
(M, N) for h ∈ 2N + 1 and g = k ∈ Z

.

(B.10)

With this convention, DGgr
W (B) is a Gh-graded category. We let degu ∈ Gh denote the

Gh-degree of morphisms, which is given by:

degu =

{

(q, α) ∈ Z × Z2 for h ∈ 2N,

2q ∈ Z for h ∈ 2N + 1

Notice that the rescaled vector R-charge of u is recovered as φh(degu), where φh : G → Z

is the group morphism given by:
{

φh(k, α) = k for h ∈ 2N,

φh(k) = k for h ∈ 2N + 1
.
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The true vector R-charge (which is valued in 1
2Z) is given by:

q(u) =

{

φh(degu) for h ∈ 2N,
1
2φh(degu) for h ∈ 2N + 1

.

On the other hand, the axial charge is recovered as ǫh(degu), where ǫh : Gh → Z2 is the

group morphism given in (5.4).

The above can also be described as follows. We have a decomposition:

M = ⊕q∈ZM [q,0̂] ⊕⊕q∈Z+ h
2
M [q,1̂] , (B.11)

with M [q,0̂] = M q
+ and M [q,1̂] = M

q−h
2

− , where M± = ⊕k∈ZMk
± are the decompositions of

M± as graded B-modules. It is clear that the components satisfy M [q,α]Bk ⊂ M [q+k,α].

For even h, equation (B.11) gives a Z×Z2 grading M = ⊕q∈Z,α∈Z2M
[q,α], while for odd

h it gives a 1
2Z-grading M = ⊕q∈ 1

2
Z
M [q], where M [q] := M [q,0̂] for q ∈ Z and M [q] := M [q,1̂]

for q ∈ Z+ 1
2 . Rescaling q for odd h such that all charges become integral, we find that the

underlying vector space of M is Gh-graded with components M (q,α) = M [q,α] for h even,

and M q := M [q/2] for h odd. This rescaled grading satisfies MgBk ⊂ Mg+ψh(k), where

the morphism ψh : Z → G is given in (5.3). Hence the objects of DGgr
W (B) are integrable

modules over the curved differential graded algebra (B, 0,W ), as discussed in section 4.

The grading (B.10) on DGgr
W (B) is naturally induced by these Gh-gradings on objects.

Finally, we notice that the difference made by the parity of h can also be seen directly.

The group Γ = ΓV × ΓA = U(1) × Z2 acts on HomDGgr
W

(B)(M, N) by the product of the

actions (B.7) and (B.8). This combined action is faithful for generic M, N when h is even,

but has a Z2 kernel when h is odd (in the the latter case we have UV (π) = UA). Hence the

‘effective’ symmetry group equals U(1) × Z2 when h is even and [U(1) × Z2]/Z2 ≈ U(1)

when h is odd. As a consequence, its group of characters equals Z × Z2 or Z respectively.

Of course, this is the group Gh considered above.
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